KLASIFIKASI PERSEDIAAN BARANG MENGGUNAKAN SUPPORT VECTOR MACHINE PADA SISTEM PERIODIC INVENTORY
DOI:
https://doi.org/10.51577/acsijournal.v2i3.633Keywords:
Sistem Inventori, Support Vector Machine, Klasifikasi, Kernel, Machine LearningAbstract
Penelitian ini bertujuan untuk mengembangkan sistem periodic inventory menggunakan algoritma Support Vector Machine (SVM) untuk mengklasifikasikan barang berdasarkan pola permintaan, guna mengatasi keterbatasan metode manual dan terkomputerisasi tradisional. Metodologi mencakup pengumpulan data inventori, pra-pemrosesan, dan penerapan SVM dengan berbagai kernel (Linear, Polynomial, RBF, dan Sigmoid) untuk klasifikasi. Hasil penelitian menunjukkan bahwa kernel RBF memiliki kinerja terbaik dengan akurasi 92%, diikuti oleh kernel Polynomial dengan akurasi 90%. Temuan ini menekankan efektivitas kernel RBF dalam menangani data non-linear dan potensinya dalam meningkatkan sistem pengelolaan inventori. Implikasi praktisnya adalah klasifikasi inventori yang lebih efisien dan akurat, mendukung pengambilan keputusan dan optimalisasi operasional.